Jawabanrasio r dari barisan geometri tersebut adalah 4 1 ​ , rumus suku ke- n nya adalah U n ​ = 4 1 ​ n − 1 , suku kesepuluh nya adalah 1 ​ .rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah . PembahasanJawaban yang benar untuk pertanyaan tersebut adalah rasio dari barisan geometri tersebut adalah 4 1 ​ , rumus suku ke- n nya adalah U n ​ = 4 1 ​ n − 1 , suku kesepuluh nya adalah 262 . 144 1 ​ . Ingat rumus umum suku ke- n deret geometri U n ​ = a ⋅ r n − 1 Dengan U n ​ suku ke − n a suku pertama r rasio = U n − 1 ​ U n ​ ​ n banyak suku ​ Jadi diperoleh rasio r dan suku pertama a dari barisan tersebut adalah a r ​ = = = ​ 1 dan 1 4 1 ​ ​ 4 1 ​ ​ Rumus suku ke- n nya adalah U n ​ U n ​ U n ​ ​ = = = ​ a ⋅ r n − 1 1 ⋅ 4 1 ​ n − 1 4 1 ​ n − 1 ​ Suku kesepuluh nya adalah U n ​ U 10 ​ ​ = = = = ​ 4 1 ​ n − 1 4 1 ​ 10 − 1 4 1 ​ 9 1 ​ ​ Dengan demikian, rasio r dari barisan geometri tersebut adalah 4 1 ​ , rumus suku ke- n nya adalah U n ​ = 4 1 ​ n − 1 , suku kesepuluh nya adalah 1 ​ .Jawaban yang benar untuk pertanyaan tersebut adalah rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah . Ingat rumus umum suku ke- deret geometri Jadi diperoleh rasio dan suku pertama dari barisan tersebut adalah Rumus suku ke- nya adalah Suku kesepuluh nya adalah Dengan demikian, rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah .
BARISANDERET BILANGAN ARITMATIKA DAN DERET GEOMETRI N adalah indeks yg menyatakan banyaknya suku dalam suatu barisan. Suku k n yg dilambangkan dengan un di sebut suku umum barisan. Contoh : Tentukan tiga suku pertama pada barisan berikut ini, jika suku ke n dirumuskan sbagai : a) Un = 3n + 1 b) Un = 2n² - 1 Jawab : Suku ke n, un = 3n + 1 Jawabanrasio r dari barisan geometri tersebut adalah − 2 , rumus suku ke- n nya adalah U n ​ ​ = ​ 3 â‹… − 2 n − 1 ​ , suku kesepuluh nya adalah − 1532 .rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah . PembahasanJawaban yang benar untuk pertanyaan tersebut adalah rasio dari barisan geometri tersebut adalah − 2 , rumus suku ke- n nya adalah U n ​ ​ = ​ 3 â‹… − 2 n − 1 ​ , suku kesepuluh nya adalah − 1532 . Ingat rumus umum suku ke- n deret geometri U n ​ = a â‹… r n − 1 Dengan U n ​ suku ke − n a suku pertama r rasio = U n − 1 ​ U n ​ ​ n banyak suku ​ Jadi diperoleh rasio r dan suku pertama a dari barisan tersebut adalah a r ​ = = = ​ 3 dan 3 − 6 ​ − 2 ​ Rumus suku ke- n nya adalah U n ​ U n ​ ​ = = ​ a â‹… r n − 1 3 â‹… − 2 n − 1 ​ Suku kesepuluh nya adalah U n ​ U 10 ​ ​ = = = = = ​ 3 â‹… − 2 n − 1 3 â‹… − 2 10 − 1 3 â‹… − 2 9 3 â‹… − 512 − 1536 ​ Dengan demikian, rasio r dari barisan geometri tersebut adalah − 2 , rumus suku ke- n nya adalah U n ​ ​ = ​ 3 â‹… − 2 n − 1 ​ , suku kesepuluh nya adalah − 1532 .Jawaban yang benar untuk pertanyaan tersebut adalah rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah . Ingat rumus umum suku ke- deret geometri Jadi diperoleh rasio dan suku pertama dari barisan tersebut adalah Rumus suku ke- nya adalah Suku kesepuluh nya adalah Dengan demikian, rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah .